Experimental human cytomegalovirus latency in CD14+ monocytes.
نویسندگان
چکیده
CD14(+) monocytes are a reservoir for latent human cytomegalovirus, and virus replication is reactivated during their differentiation to macrophages or dendritic cells. It has not been clear whether the virus can establish latency upon direct infection of monocytes or whether it must first become quiescent in a progenitor cell that subsequently differentiates to generate a monocyte. We report that infection of primary human monocytes with a clinical strain of human cytomegalovirus exhibits the hallmarks of latency. We established conditions for culturing monocytes that prevent differentiation for at least 25 d, as evidenced by cell surface marker expression. Infection of these monocytes with the FIX clinical strain resulted in transient accumulation of many viral lytic RNAs and sustained expression of four previously described latency-associated transcripts. The amount of viral DNA remained constant after infection, and cell surface and total HLA-DR proteins were substantially reduced on a continuing basis after infection. When treated with cytokine mixtures that stimulate differentiation to a macrophage or dendritic cell phenotype, infected monocytes reactivated virus replication and produced infectious progeny. Treatment of infected monocytes with IL-6 alone also was sufficient for reactivation, and the particles produced after exposure to this cytokine were about fivefold more infectious than virions produced by other treatments. We propose that in vivo microenvironments influence not only the efficiency of reactivation but also the infectivity of the virions produced from latently infected monocytes.
منابع مشابه
Cis and Trans Acting Factors Involved in Human Cytomegalovirus Experimental and Natural Latent Infection of CD14 (+) Monocytes and CD34 (+) Cells
The parameters involved in human cytomegalovirus (HCMV) latent infection in CD14 (+) and CD34 (+) cells remain poorly identified. Using next generation sequencing we deduced the transcriptome of HCMV latently infected CD14 (+) and CD34 (+) cells in experimental as well as natural latency settings. The gene expression profile from natural infection in HCMV seropositive donors closely matched exp...
متن کاملEfficient human cytomegalovirus reactivation is maturation dependent in the Langerhans dendritic cell lineage and can be studied using a CD14+ experimental latency model.
Studies from a number of laboratories have shown that the myeloid lineage is prominent in human cytomegalovirus (HCMV) latency, reactivation, dissemination, and pathogenesis. Existing as a latent infection in CD34(+) progenitors and circulating CD14(+) monocytes, reactivation is observed upon differentiation to mature macrophage or dendritic cell (DC) phenotypes. Langerhans' cells (LCs) are a s...
متن کاملHuman cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency.
Human cytomegalovirus (HCMV) resides latently in hematopoietic cells of the bone marrow. Although viral genomes can be found in CD14+ monocytes and CD34+ progenitor cells, the primary reservoir for latent cytomegalovirus is unknown. We analyzed human hematopoietic subpopulations infected in vitro with a recombinant virus that expresses a green fluorescent protein marker gene. Although many hema...
متن کاملHuman cytomegalovirus latent infection of myeloid cells directs monocyte migration by up-regulating monocyte chemotactic protein-1.
Following primary infection, human cytomegalovirus (HCMV) establishes a latent infection in hematopoietic cells from which it reactivates to cause serious disease in immunosuppressed patients such as allograft recipients. HCMV is a common cause of disease in newborns and transplant patients and has also been linked with vascular diseases such as primary and post-transplant arteriosclerosis. A m...
متن کاملHuman Cytomegalovirus Induces TLR4 Signaling Components in Monocytes Altering TIRAP, TRAM and Downstream Interferon-Beta and TNF-Alpha Expression
Using TLR pathways, primary human cytomegalovirus (HCMV) induces innate responses including the production of inflammatory cytokines. Mounting evidence suggests that LPS recognition by TLR4/MD2/CD14 results in differential utilization of TIRAP-TRAF6 and TRAM-TRIF signaling, thereby leading to transcriptional activation of various cytokine genes. However, relative roles of the TLR4/MD2/CD14 comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 46 شماره
صفحات -
تاریخ انتشار 2010